T. 32

1994

Вып. 2

УДК 550.385.41

© 1994 г. В. В. Афонин, К. В. Гречнев, В. А. Ершова, О. З. Ростэ, Н. Ф. Смирнова, Ю. А. Шульчишин, Я. Шмилауэр

ИОННЫЙ СОСТАВ И ТЕМПЕРАТУРА ИОНОСФЕРЫ В МАКСИМУМЕ 22 ЦИКЛА СОЛНЕЧНОЙ АКТИВНОСТИ, ПОЛУЧЕННЫЕ СО СПУТНИКА «ИНТЕРКОСМОС-24» (ПРОЕКТ «АКТИВНЫЙ»)

Институт космических исследований РАН Геофизический институт Чешской АН

Представлены масс-спектрометрические и зондовые данные по абсолютным и относительным концентрациям ионов O⁺, N⁺, H⁺, He⁺, суммарной ионной концентрации, электронной и ионной температурам, полученные на спутнике «Интеркосмос-24», в интервале высот 500+2500 км в спокойных геомагнитных условиях в период максимума солнечной активности 22 цикла. В этот период наблюдались повышенные концентрации и температуры. На инвариантных широтах ± 35° концентрация О⁺ в области перигея в освещенное время суток доходила до (1+3) · 10⁶ см⁻³. Ионная температура T_i для этих условий - 1200+1500 К, электронная - 2500+3000 К. В области главного ионосферного провала на высотах порядка 1000 км электронная температура часто поднимается до 6000+7000 К; ночью она ниже дневной примерно на 500 К. Предполагается, что высота максимума F2-слоя ночью летом на средних широтах могла достигать 500-520 км с величиной концентрации ионов 6 · 10⁵ см⁻³. В экваториальной области часто ярко выражена геомагнитная аномалия с горбами в ионной концентрации примерно на ±15° инвариантной широты. Уровень перехода от концентрации O⁺ к H⁺ увеличивается от нижих широт к высоким как днем, так и ночью. Днем он изменялся от 1300+1400 км в районе экватора до 2400+2500 км на магнитных широтах 40+45°, а ночью от 900+1000 км до 1200+1400 км в этих же широтных областях. Отмечено достаточно частое преобладание ионов He⁺ над H⁺ и O⁺ больше чем на порядок величины, на инвариантных широтах выше 70°.

V. A. Afonin, K. V. Grechnev, V. A. Ershova, O. Z. Roste, N. F. Smirnova, J. Shmilauer, J. A. Shultchishin. Ion composition and temperature of ionosphere at maximum of 22 solar activity cycle from satellite «Intercosmos-24» («Activniy» project). Mass-spectrometer and probe ion O^+ , N^+ , H^+ , He^+ densities, total ion density and electron and ion temperatures data from «Intercosmos-24» satellite are presented. Data obtained for the altitude range from 500 km to 2500 km at the magnetically quiet conditions during maximum of 22 cycle solar activity. During this period increased densities and temperatures were observed. At invariant latitudes $\pm 35^\circ$ at the sunlit perigee region O^+ densities reached to $(1+3) \cdot 10^6$ cm⁻³. At these conditions the ion temperature was 1200—1500 K and the electron temperature was 2500+3000 K. In the main ionospheric trough region at the altitudes about 1000 km the electron temperature increased often up to 6000—7000 K. At night the electron temperature is about 500 K lower than that in the daytime. It is proposed that the midlatitude summer F₂ layer maximum altitude at night could reach to 500+520 km with ion density $6 \cdot 10^5$ cm⁻³. In the equatorial region the well expressed geomagnetic anomaly was

km a from obse Суще модель 1 частност ператур особенно ионного данных. Непо спектром др. [1]. концент малой и Пред спектрон «Интерк солнечн активно указаны Прям

often

level it wa

проводи высокой получен же спут ператур Из с получен

тивности ва что поз Цељ в споко Будет у сительн

ионов в период туры. Спу приборо [**7**]. Пр ментам для изі для из) радиоча состава Спу около . Спутни рости., (угол а

дования

Вып. 2

ев, В. А. Ершова, . Шульчишин,

А ИОНОСФЕРЫ ОЙ АКТИВНОСТИ, Теркосмос-24» Ь)

ний РАН ЮЙ АН

внные по абсолютным и отноарной ионной концентрации, путнике «Интеркосмос-24», в условиях в период максимума сь повышенные концентрации прация О⁺ в области перигея ная температура Т₁ для этих бласти главного ионосферного ратура часто поднимается до К. Предполагается, что высота пла достигать 500-520 км с в области часто ярко выражена имерно на ±15° инвариантной личивается от низких широт от 1300+1400 км в районе а ночью от 900+1000 км до статочно частое преобладание », на инвариантных широтах

Z. Roste, N. F. Smirnova, emperature of ionosphere at mos-24» (*Activniy» project). total ion density and electron e presented. Data obtained for tically quiet conditions during used densities and temperatures ee region O⁺ densities reached was 1200-1500 K and the t trough region at the altitudes to 6000-7000 K. At night the aytime. It is proposed that the reach to 500+520 km with ion used geomagnetic anomaly was often observed with Ni crests located at about $\pm 15^{\circ}$ invariant latitudes. The O⁺—H⁺ transition level increases from lower to higher latitudes both in the daytime and at night. In the daytime it was observed to change from heights 1300+1400 km in equatorial region to 2400+2500 km at the magnetic latitudes 40—45°. At night this level changes in these latitude regions from 900—1000 km to 1200+1400 km. Predominance of He⁺ ions above H⁺ and O⁺ was observed rather often at the latitudes more than 70°.

Существующие в настоящее время ионосферные модели, включая известную модель IRI, плохо представляют состав даже основных ионных компонентов, в частности из-за отсутствия достаточной базы данных. Модельное описание температур электронов и ионов также обладает рядом существенных недостатков, особенно в экваториальной области. Необходимо дальнейшее изучение поведения ионного состава и температуры ионосферной плазмы с использованием новых данных.

Непосредственные измерения ионного состава проводились ловушками и массспектрометрами на разных спутниках: серии OGO, Explorer, ISIS, Aeros, AE и др. [1]. Практически во всех этих экспериментах также измерялись электронные концентрация и температура. Однако эти данные относятся в основном к периоду малой или средней солнечной активности 20 цикла.

Представленные в данной статье результаты измерений, полученные массспектрометром, плоской ионной ловушкой и высокочастотным зондом на спутнике «Интеркосмос-24» в рамках проекта «Активный», относятся к периоду высокой солнечной активности 22 цикла (1989 г.— 157,6), сравнимой с максимальной активностью 19 (1957 г.— 190,2) и 21 (1979 г.— 155,4) циклов. В скобках указаны средние числа солнечных пятен за самый активный год цикла.

Прямые измерения ионного состава во время максимума активности 19 цикла проводились редко и с ограниченным набором измеряемых ионов [2]. Для периода высокой активности 21 цикла были опубликованы данные по ионному составу, полученные масс-спектрометром на спутниках ISS-В и DE-1 [3—5]. На этих же спутниках, а также на DE-2 измерялись электронные концентрация и температура [6].

Из сказанного выше следует, что данные по ионному составу и температуре, полученные в эксперименте «Активный» в максимуме 22 цикла солнечной активности очень актуальны. Ценность данных увеличивается благодаря возможности взаимных уточнений результатов измерений ловушки и масс-спектрометра, что позволяет обеспечить большую надежность данных по ионному составу.

Цель статьи показать, какой была фоновая ионосфера в области высот 500+2500 км в спокойных геофизических условиях в период высокой солнечной активности. Будет уделено внимание таким ионосферным данным, как абсолютная и относительная концентрации основных ионов O⁺, N⁺, H⁺, He⁺, высота перехода от ионов кислорода к ионам водорода, относительное содержание ионов гелия в период высокой солнечной активности, а также ионная и электронная температуры.

Спутник «Интеркосмос-24», на борту которого находился, в частности, комплекс приборов для измерений плазмы, запущен по проекту «Активный» 28.IX.1989 г. [7]. Предлагаемая статья посвящается результатам, полученным тремя инструментами: плоской ионной ловушкой (анализатором с тормозящим потенциалом) для измерения температуры и концентраций ионов, высокочастотным зондом для измерения электронной температуры (объединенными в приборе КМ-6) и радиочастотным масс-спектрометром (прибором HAM-5) для измерения ионного состава окружающей плазмы.

Спутник запущен на орбиту с параметрами: апогей около 2500 км, перигей около 500 км, наклонение 82°, период обращения вокруг Земли — 1 ч 56 мин. Спутник имеет трехосную стабилизацию, ось X ориентирована по вектору скорости. Для приводимых в статье орбит угол между осью X и векторомыскорости (угол атаки) не превышал 15°.

Рассматриваются совместные данные, полученные указалными выше приборами с 20.Х.1989 г. по май 1991 г. За это время получена информация как в телеметрическом режиме непосредственной передачи, так и воспроизведения, причем объем сеанса воспроизведения (в зависимости от режима телеметрии) составляет от четверти витка до 9 витков.

Обработанный к настоящему времени материал охватывает разные периоды суток, сезоны, различные высотно-широтные и долготные области, что дает возможность использовать его для целей моделирования ионосферы.

Описание аппаратуры

Ионный состав измерялся масс-спектрометром НАМ-5, состоящим из датчика и электронного блока. Прибор создан в развитие серии масс-спектрометров для измерения верхней атмосферы: НАМ-1р, НАМ-3 и НАМ-4. Датчик установлен на штанге с продольной осью датчика, расположенной вдоль направления полета. Он представляет собой радиочастотный анализатор беннетовского типа [8], на входе которого находится ионный источник. При работе в ионном режиме ионный источник выключен. Вблизи входного отверстия анализатора размещен изолированный электрод для измерения плавающего потенциала относительно корпуса спутника. Питание сеток анализатора подается относительно потенциала этого электрода, что позволяет практически скомпенсировать влияние потенциала спутника на измерение ионов. Электроника прибора дает возможность иметь 32 программы, включающие разные режимы работы прибора, отличающиеся, например, разным массовым диапазоном, чувствительностью, разрешением. Имеется возможность менять некоторые режимы работы «на лету», а также проводить на борту частичную обработку. В данном эксперименте реализован диапазон концентраций ионов 0,1+3·10⁶ см⁻³, режимы с разрешением от 10 до 20 (на уровне 10% высоты пика), диапазон масс с 1 до 65 а.е.м., причем в разных программах использованы разные поддиапазоны масс. Возможности прибора позволяют получить больший динамический диапазон примерно на порядок величины, разрешение до 30 и диапазон масс до 140 а.е.м. Прибор измеряет относительные концентрации ионов. Точность определения отношений He^+/H^+ и N^+/O^+ не хуже 10%, а отношений O^+ и N^+ к легким компонентам не хуже

20% с учетом того факта, что угол атаки может доходить до 15°. Концентрации ионов N_i, температуры электронов T_i и ионов T_i измерялись прибором КМ-6, представляющим собой развитие серии приборов типа КМ, применявшихся на многих спутниках и ракетах. Для измерения N, и T, использовалась плоская ионная ловушка, ориентированная по вектору скорости спутника. Величины N, и T, определялись в результате сложной математической обработки вольт-амперных характеристик (интегральных энергетических спектров) с использованием метода подбора параметров аналитической модели к экспериментальным данным [9]. Величина Т, определялась при помощи высокочастотного зонда электронной температуры [10, 11]. В приборе КМ-6 использовались три высокочастотных зонда электронной температуры, ориентированные по трем взаимно-перпендикулярным направлениям. Все эти датчики были объединены в один блок ИПХП (измеритель параметров холодной плазмы), который для уменьшения влияния потенциала корпуса на результаты измерения был установлен на штанге, направленной вперед по вектору скорости космического аппарата (КА). Для повышения точности измерений корпус блока ИПХП был изолирован от корпуса КА, и его потенциал регулировался так, что его отличие от потенциала плазмы не превышало 0,1 В. Диапазон измерения концентраций 10²—5·10⁶ см⁻³, температуры электронов 500+100 000 К.

Калибровка прибора HAM-5 проводилась следующим образом. Масс-спектрометр измеряет относительный состав ионов. Поэтому для получения абсолютных концентраций ионов проводилась калибровка сравнением полного ионного тока с результатами прибора (КМ-6), измеряющего суммарную ионную концентрацию. Такая кал поскольку масс по ра диапазоне л прибора эп Для тог к отдельны дилось вдол На витках, прибора КМ витков. По

Во врем He⁺, O⁺, N⁴ малые иони магния (Mкислород (ионам H⁺, На рис. полученные (H⁺ и He⁺) T_{i} и T_{i} вдо Вольт-ан позволили провести а

казалными выше прибочена информация как в так и воспроизведения, от режима телеметрии)

пывает разные периоды ные области, что дает ионосферы.

состоящим из датчика масс-спектрометров для -4. Датчик установлен ль направления полета. стовского типа [8], на нонном режиме ионный тора размещен изолив относительно корпуса льно потенциала этого влияние потенциала возможность иметь 32 а, отличающиеся, наразрешением. Имеется », а также проводить реализован диапазон инем от 10 до 20 (на м., причем в разных можности прибора поерно на порядок велим. Прибор измеряет ия отношений Не⁺/Н⁺ компонентам не хуже ть до 15°.

ионов Т, измерялись приборов типа КМ, рения N_i и T_i испольру скорости спутника. матической обработки ских спектров) с исюдели к эксперименщи высокочастотного б использовались три тированные по трем в были объединены в азмы), который для измерения был устасти космического апс блока ИПХП был так, что его отличие врения концентраций

разом. Масс-спектролучения абсолютных олного ионного тока нную концентрацию.

Рис. 1. Температуры T_{\bullet} , T_{i} и концентрации O⁺, KM6 и H⁺ + He⁺, KM6 — получены прибором KM6, а концентрации ионов O⁺, H⁺, N⁺ и He⁺ — масс-спектрометром HAM5 на витке 2886 18.V.1990 г. Долгота прохождения экватора 274[•]

Такая калибровка позволяет также уточнить и относительный состав ионов, поскольку (хотя прибор фактически и не имеет дискриминации в измерении масс по развертке) в полет он был настроен с большей чувствительностью в диапазоне легких масс. Кроме этого необходимо отметить, что чувствительность прибора эпизодически изменялась экспериментаторами во время полета.

Для того чтобы получить прямую калибровку абсолютной чувствительности к отдельным ионным компонентам, сравнение с данными прибора КМ-6 проводилось вдоль орбиты в местах, где существенно преобладают либо О⁺, либо Н⁺. На витках, где невозможно получить калибровку сравнением данных с данными прибора КМ-6, принимались значения калибровочных коэффициентов ближайших витков. Подробнее о калибровке данных на конкретных витках говорится ниже.

Результаты измерений и обсуждение

Во время полета масс-спектрометром измерялись атомарные компоненты H⁺, He⁺, O⁺, N⁺ и молекулярные ионы: N₂⁺, NO⁺, O₂⁺. Прибор зарегистрировал также малые ионные составляющие: дейтерий (или He⁺⁺, M/Z = 2), кислород-18, ионы магния (M = 24), железа (M = 56), дважды ионизованные компоненты — азот и кислород (M/Z = 7, M/Z = 8). В данной статье приведены данные только по ионам H⁺, He⁺, O⁺, N⁺.

На рис. 1 представлены вариации концентраций ионов O⁺, N⁺, H⁺, He⁺, полученные масс-спектрометром HAM-5, и данные по O⁺ и сумме легких ионов (H⁺ и He⁺), полученные прибором KM-6, 18.V 1990 г., а также показаны ход T_{\star} и T_{ι} вдоль орбиты по данным прибора KM-6.

Вольт-амперные характеристики, полученные прибором КМ-6 на этом витке, позволили уверенно разделить О⁺ и сумму легких ионов, что дало возможность провести абсолютную калибровку масс-спектрометра отдельно по диапазонам легких и средних масс. Поскольку в области орбиты, где есть данные обоих приборов по легким ионам, концентрации ионов водорода, измеренные массспектрометром, существенно превышают концентрации гелия, то сумма концентраций легких ионов, измеренная КМ-6, практически соответствует концентрации ионов водорода. Данные рисунка относятся к долготам 270+280°, инвариантным шиготам INLAT от —30°, через экватор, до 80°, высотам Н от 1500, через перигей (505 км) до 590 км, от 00.30 до 02.00 LT (ночь) соответственно. Примерно от широты 60° в сторону высоких широт высоты, где находится спутник, уже освещены солнцем.

Видно, что от высоты 900+1000 км до перигея преобладает ион атомарного кислорода. На высотах 1000+1500 км начинает преобладать H⁺. Таким образом, высота перехода, где концентрация O⁺ равна концентрации H⁺ — примерно 1000 км и приходится на широты, близкие к геомагнитному экватору. Ход ионов атомарного азота вдоль орбиты примерно повторяет ход ионов O⁺, и его концентрация относительно O⁺ меняется от 7 до 2%.

Вариации вдоль орбъты ионов He⁺ показывают значительный экваториальный провал в интервале ±25° инвариантной широты. Провал для ионов водорода менее выражен и смещен к инвариантным широтам —15°. В то же самое время отсутствует провал в ионах кислорода и азота.

Концентрации He⁺ уменьшаются в провале в 3 раза по сравнению с максимумом на средних широтах в северном полушарии и примерно на порядок — с максимумом в южном. Провал в концентрации гелия расположен в области высот 600—1100 км, где концентрация гелия должна расти с высотой, как малая ионная составляющая в услогиях диффузионного равновесия. Концентрация He⁺ в зимнем (южном) полушарии больше, чем в летнем (северном) (так называемое зимнее вздутие гелия). Концентрации ионов гелия по отношению к концентрациям водорода изменяются от 1% на экваторе до 20—50% на средних широтах.

Как было показано в работе [12] по данным ионного состава на OGO-4, провал в концентрации He⁺ на экваторе изменяется в зависимости от величины угла α между направлением Земля—Солнце и плоскостью магнитного экватора. Для больших α (долгота Америки) он широкий и глубокий, и ярко выражена сезонная асимметрия (зимнее вздутие He⁺). Провал на американских долготах существует как днем, так и ночью [13].

Для условий, представленных на рис. 1, измерения относятся к американским долготам, что объясняет выраженный провал в He^{*}. Вариации ионов атомарного кислорода и азота от широты для высотного интервала 900—500 км, приведенные на рисунке в работе [12] по данным OGO-4, похожи на представленные здесь данные на витке 2886 в этом же интервале высот и широт. В работе [12] предполагается, что широтные профили ионов кислорода и азота являются плавными функциями высоты. Действительно (см. рис. 1), концентрации O⁺ и N⁺ растут с уменьшением высоты как в южном, так и в значительной части северного полушария.

Если взять только северное (летнее) полушарие и не рассматривать широты меньше 30 и больше 60° (области провалов в ионных концентрациях в спокойных геомагнитных условиях), то видно, что на средних широтах (параметр Мак — Илвайна L = 1,5+3) в интервале высот 550+500 км концентрация ионов N⁺ падает с уменьшением высоты, т. е. шкала высоты для N⁺ меняет знак, что обычно происходит при переходе через максимум высотного распределения иона.

Таким образом, можно предположить, что в нашем случае максимум слоя в концентрации N^+ лежит на высоте 550+570 км. Ход концентрации He^+ в этом же интервале высот также позволяет предположить, что и распределение ионов гелия обусловлено изменением высоты. Сам максимум высотного распределения гелия расположен выше 600 км и маскируется низко-широтным провалом в концентрации He^+ . Максимум высотного распределения ионов O^+ по данным других экспериментов, как правило, примерно на 50 км ниже, чем N^+ [14, 15],

поэтому вполне во т. е. максимум сл

Так как с росто частиц, и происхо ствием этого стано меридиональный и к экватору, что пр частиц. Этот дрейи концентраций ней (рекомбинация ум количества плазмь F₂ слой и поддерж

Таким образом, активности, в ноч Действительно, в і км. Однако это нес Солнца (F_{10,7} = 265

В работе [16] 1 от 200 до 450 км днем ниже, чем на активности. Поско средних широтах, 450 км или нескол

Однако не искл вдоль орбиты — эт менениями парамет и молекул, скорос

Ионная и элект на витке 2886, по удалось получить и ристик, поэтому н минимум 1900 К во (3000 К на инвари свидетельствует о лорода (рис. 1) от происходит с конц Концентрация

45° равна 6 · 10⁵ с

На INLAT ≈ 63 резкой полярной ст концентрации. Ем формой, но с широ хода T_e на INLA нагреву электроно тикорреляция N_i в T_e) в значительно

Аналогичные с области на INLAT особенно в *T_e*. В примерно на 1000 пропорционален х

Знание электро родной атмосферы высотного градиен принять высотный мерений, 2 К/км, , где есть данные обоих орода, измеренные массгелия, то сумма концентветствует концентрации 270+280°, инвариантным сотам Н от 1500, через (ночь) соответственно. высоты, где находится

обладает ион атомарного дать H⁺. Таким образом, и H⁺ — примерно 1000 км ру. Ход ионов атомарного O⁺, и его концентрация

гельный экваториальный сал для ионов водорода 5°. В то же самое время

сравнению с максимумом на порядок — с максиложен в области высот с высотой, как малая есия. Концентрация Не⁺ серном) (так называемое шению к концентрациям а средних широтах.

ого состава на ОGO-4, висимости от величины ю магнитного экватора. окий, и ярко выражена американских долготах

носятся к американским нации ионов атомарного 0—500 км, приведенные а представленные здесь широт. В работе [12] ода и азота являются 1), концентрации О⁺ и в значительной части

рассматривать широты ентрациях в спокойных отах (параметр Мак грация ионов N⁺ падает няет знак, что обычно пределения иона.

лучае максимум слоя в щентрации He⁺ в этом и распределение ионов исотного распределения широтным провалом в ионов O⁺ по данным ииже, чем N⁺ [14, 15], поэтому вполне вероятно, что высотный пик в концентрации ионов кислорода, т. е. максимум слоя F₂, может располагаться около перигея.

Так как с ростом солнечной активности повышается температура нейтральных частиц, и происходит расширение («вздутие») атмосферы, то неизбежным следствием этого становится подъем максимума слоя F_2 на большие высоты. Ночью меридиональный ветер меняет свое дневное направление к полюсу на направление к экватору, что приводит к появлению направленного вверх дрейфа заряженных частиц. Этот дрейф поднимает ионосферную плазму в область малых значений концентраций нейтральных молекул, где время жизни ионов увеличивается (рекомбинация уменьшается), что и обеспечивает сохранение значительного количества плазмы в течение всей ночи, т. е. дрейф плазмы вверх поднимает F_2 слой и поддерживает N_i на достаточно высоком уровне.

Таким образом, самая большая высота слоя F_2 будет в максимуме солнечной активности, в ночное время, и, может быть, его можно увидеть в перигее. Действительно, в концентрации ионов О⁺ виден максимум на высоте 500—520 км. Однако это необычно высокий максимум даже для такой высокой активности Солнца ($F_{10,7} = 265$ единиц) в этот день.

В работе [16] показано, что высота максимума слоя F_2 варьирует примерно от 200 до 450 км в течение цикла солнечной активности. Максимум находится днем ниже, чем ночью и на больших высотах во время повышенной солнечной активности. Поскольку данные для витка 2886 относятся к ночным условиям на средних широтах, летом, высота слоя должна находиться примерно на высоте 450 км или несколько выше для $F_{10.7} = 265$ ед. (см. рис. 75 в работе [16]).

Однако не исключено, что изменение концентрации ионов кислорода и азота вдоль орбиты — это широтные вариации, вызванные, например, широтными изменениями параметров атмосферы (температуры, отношения концентраций атомов и молекул, скоростью горизонтального ветра).

Ионная и электронная температуры, измеренные прибором КМ-6 вдоль орбиты на витке 2886, показаны на рис. 1. На этом витке в южном полушарии не удалось получить ионную температуру из имеющихся вольт-амперных характеристик, поэтому на рисунке она не показана. Электронная температура имеет минимум 1900 К вблизи магнитного экватора и увеличивается к высоким широтам (3000 К на инвариантной широте 60°), несмотря на уменьшение высоты (что свидетельствует о большом широтном градиенте T_e). Концентрация ионов кислорода (рис. 1) от широты 45 до 60° монотонно падает, точно так же как это происходит с концентрацией кислорода по данным масс-спектрометра.

Концентрация ионов О⁺ в полученном максимуме на инвариантной широте 45° равна $6 \cdot 10^5$ см⁻³ (ночь, лето).

На INLAT $\approx 63^{\circ}$ отчетливо виден главный ионосферный провал (ГИП) с резкой полярной стенкой, плавным экваториальным склоном и узким минимумом концентрации. Ему соответствует субавроральный максимум T_e с аналогичной формой, но с широтной вариацией противоположного направления. Резкий излом хода T_e на INLAT 60° свидетельствует о том, что механизм, приводящий к нагреву электронов, проявляется в области широт INLAT > 60°, а строгая антикорреляция N_i и T_e – о том, что механизм этих явлений (ГИП и максимум T_e) в значительной степени связаны между собой.

Аналогичные структуры в N_i и в T_e зарегистрированы также в авроральной области на INLAT $\approx 70^\circ$. На INLAT $\geq 63^\circ$ наблюдается увеличение флуктуаций, особенно в T_e . В обоих случаях изменения в T_i малы. На INLAT $> 60^\circ T_i$ примерно на 1000 К выше, чем на средних широтах, и ее ход приблизительно пропорционален ходу T_e .

Знание электронной и ионной температур позволило посчитать высоту однородной атмосферы (H) для O⁺ в условиях диффузионного равновесия. Без учета высотного градиента температуры в районе высоты 600 км H = -244 км. Если принять высотный градиент температуры, неизвестный непосредственно из измерений, 2 K/км, то H = -215 км. Измеренная из профиля концентрации O⁺

Рис. 2. Температуры T_e , T_i и концентрации O⁺, КМб и H⁺ + He⁺, КМб получены прибором КМб, а концентрации ионов O⁺, H⁺, N⁺ и He⁺ — масс-спектрометром НАМ5 на витке 2146 19.III.1990 г. на высотах перигея. Долгота прохождения экватора 274^{*}

вдоль орбиты (считая его преимущественно высотным) высота однородной атмосферы в районе высот 550+600 км равна примерно — 200 км, что хорошо согласуется с рассчитанной.

Температура ионов, оцененная по данным масс-спектрометра из отношения концентраций ионов азота и кислорода в районе высот 900—950 км, составляет около 1000 К. По данным КМ-6 в этом интервале высот она равна 1200+1300 К.

Для периода высокой солнечной активности (1979 г.) на спутнике ISS-В получены данные масс-спектрометра по ионному составу и анализатора с тормозящим потенциалом по ионным и электронным концентрациям и температурам для высоты 1100 км в разные сезоны и время суток [4]. Данные рис. 1 по концентрациям и температурам хорошо согласуются с результатами, полученными в аналогичных условиях (но усредненными за 3 месяца) на спутнике ISS-В.

В измерениях на спутнике ISS-В наблюдался минимум в широтном распределении T_e в районе магнитного экватора в ночные часы на высоте 1100 км. Его пространственные размеры примерно 20° по широте и 100° по долготе. Предполагается, что в период максимума солнечной активности механизм, приводящий к образованию провала, выражен в большей степени [17]. Летом экваториальный минимум T_e находится на долготах от 300 до 40°.

Приведенные на рис. 1 данные по электронной температуре в нашем эксперименте относятся к долготе 270°, что объясняет отсутствие выраженного провала в электронной температуре в районе экватора.

На рис. 2 представлены вариации ионного состава, полученные масс-спектрометром НАМ-5 и ионной ловушкой КМ-6 на витке 2146 19.III 1990 г. Показаны компоненты O⁺, N⁺, H⁺, He⁺, измеренные масс-спектрометром в южной полусферс и концентрации O⁺ и сумма концентраций легких ионов H⁺ и He⁺, измеренные ионной ловушкой в обеих полусферах. Видно хорошее соответствие формы орбитального хода концентрации O⁺, полученного обоими пряборами. В области $30-40^{\circ}$ инвариантных широт в южном полушарии концентрации гелия, измеренные масс-спектрометром, превышают концентрации водорода почти на порядок величины, и су соответствовать спектрометра в Высота вдол

через перигей области, долгот спутника ионос

Видно, что максимальной к (перигей). Макс ствие экваторна после захода С геомагнитного з щенных электр силовым линия которого относн ферном провале трации ионов п существенное в

Поскольку и центрация О⁺ п трации. Сопост частоты (электр дирования в ма африканской до 18.00 n 20.00 L пересечения эка виден ГИП глу шийся в концё вечернем сектор Т. (рис. 2). Вел низких широт только по при полушарии, не блюдаются мак эффектов в вел источников наг источников. Хо одинаковая их

случае служит На рис. 2 п

В измерения погрешность изменяющего еми грешности мож больших 3 · 10 наблюдались оч этой области на

Несмотря на измерялась, по факт, что в об свидетельствует поэтому величи до высот 650 к Первые изм

КМ6 получены прибором КМ6, а 15 на витке 2146 19.111.1990 г. на

м) высота однородной атно —200 км, что хорошо

нектрометра из отношения от 900—950 км, составляет от она равна 1200+1300 К. 79 г.) на спутнике ISS-В таву и анализатора с торсентрациям и температурам ок [4]. Данные рис. 1 по езультатами, полученными ща) на спутнике ISS-В. нмум в широтном распречасы на высоте 1100 км. проте и 100° по долготе. ктивности механизм, приней степени [17]. Летом от 300 до 40°.

тературе в нашем экспетвие выраженного провала

, полученные масс-спект-146 19.111 1990 г. Показаны истром в южной полусфере вов H⁺ и He⁺, измеренные шее соответствие формы ими пряборами. В области внцентрации гелия, измеводорода почти на порядок величины, и сумма концентраций легких ионов, измеренных ловушкой, должна соответствовать концентрации гелия, что позволило провести калибровку массспектрометра по He⁺.

Высота вдоль орбиты меняется от 1100 км в южной авроральной области через перигей 504 км вблизи экватора до 1300 км в северной авроральной области, долгота — от 60 до 20°, местное время — от 18 до 20 ч (на высотах спутника ионосфера освещена).

Видно, что преобладающим ионом на всех высотах является кислород с максимальной концентрацией в районе $\pm 15^{\circ}$ инвариантной широты $3 \cdot 10^{6}$ см⁻³ (перигей). Максимумы, симметричные относительно магнитного экватора — следствие экваториальной аномалии, которая в течение дня и нескольких часов после захода Солнца создает максимумы N_i , располагающиеся на 10+30° от геомагнитного экватора. Аномалия вызывается подъемом плазмы вверх в скрещенных электрическом и магнитном полях и дальнейшей диффузией вниз по силовым линиям [18]. Этот эффект виден также в ионах азота, содержание которого относительно кислорода — от 2% в районе экватора до 16% в ионосферном провале. Сильнее всего экваториальный провал проявляется в концентрации ионов гелия, но на распределение ионов гелия в этом интервале высот существенное влияние оказывает и высотный ход.

Поскольку ионы кислорода преобладают на высотах в районе экватора, концентрация О* практически равна суммарной ионной (или электронной) концентрации. Сопоставляя наши данные с широтными зависимостями критической частоты (электронной концентрации), полученными на станциях наземного зондирования в марте для периода максимума солнечной активности (1958 г.) в африканской долготной зоне, видно, что именно в интервале времени между 18.00 и 20.00 LT геомагнитная аномалия наиболее развита [18]. Местное время пересечения экватора по нашим данным соответствует 19.00 LT. На рис. 2 также виден ГИП глубиной примерно порядка величины в концентрации, проявляющийся в концентрациях всех ионов на 70° южной инвариантной широты в вечернем секторе (18.00 MLT). В области провала наблюдается широкий максимум T_e (рис. 2). Величина T_e в максимуме 6500 K, а «фоновое» значение со стороны низких широт равно примерно 4000 К. В северном полушарии имеются данные только по прибору КМ-6. Значительных структур, подобных ГИП в южном полушарии, не зарегистрировано. В обоих полушариях на INLAT = 50+55° наблюдаются максимумы в T_e. Их расположение, а также отсутствие заметных эффектов в величинах концентраций свидетельствует об отсутствии локальных источников нагрева; ионосфера в этих случаях нагревается за счет плазмосферных источников. Хорошая магнитная сопряженность этих максимумов и примерно одинаковая их величина свидетельствуют, что источником энергии в данном случае служит кольцевой ток.

На рис. 2 представлены ионная и электронная температуры вдоль орбиты.

В измерения электронной температуры высокочастотным зондом вносится погрешность из-за существования около внешнего электрода зонда слоя плазмы, меняющего емкость, что приводит к некоторому завышению T_e . Величина погрешности может быть существенной (больше 10—20%) для концентраций, больших $3 \cdot 10^5$ см⁻³. В связи с тем, что в районе экваториальной аномалии наблюдались очень высокие концентрации (больше 10^6 см⁻³), данные по T_e в этой области не приводятся до уточнения коэффициента коррекции.

Несмотря на то что в данном эксперименте температура нейтралов (T_n) не измерялась, полученные данные позволяют сделать вывод о ее величине. Тот факт, что в области экваториальной аномалии T_i практически не изменяется, свидетельствует о том, что ионы очень эффективно охлаждаются нейтралами и поэтому величина $T_n \approx T_i$. Из хода T_i можно заключить, что по крайней мере до высот 650 км на широтах не более 30° $T_i = T_n$.

Первые измерения глобальной структуры F-области в N_e и T_e при очень

Рис. 3. Температура T_e и суммарная концентрация N_e , КМб получены прибором КМб, а концентрации ионов O⁺, H⁺, N⁺ и He⁺ — масс-спектрометром HAM5 на витке 2146 19.III.1990 г. на высотах апогея. Долгота прохождения экватора 205°

высоких уровнях солнечной активности (F_{10,7} > 200 ед.) были проведены зондом Ленгмюра на спутнике DE-2 [6]. К сожалению, нельзя провести детальное сравнение измерений из-за различий в орбитальных и геофизических условиях.

На рис. З представлены вариации концентраций ионов O⁺, H⁺, N⁺ и He⁺, полученные масс-спектрометром на том же витке 2146, но для его апогейной части. Также показаны суммарная ионная концентрация, измеренная плоской ионной ловушкой, и электронная температура, измеренная высокочастотным зондом.

В области низких широт основной составляющей, существенно превышающей по концентрации другие ионы, является водород, и суммарная ионная концентрация практически равна концентрации H⁺. На высоких широтах преобладают ионы кислорода, и суммарная ионная концентрация равна концентрации O⁺.

Высота вдоль орбиты меняется от 1500 км в высоких широтах до 2500 км на экваторе, долгота от 180 до 205°, местное время от 05.00 до 07.30 (атмосфера освещена).

Видно характерное для больших высот уменьшение с широтой концентрации легких ионов и увеличение ионов O⁺ и N⁺. На низких широтах концентрация ионов водорода не меняется с широтой от +20 до -25° и составляет (2+3) $\cdot 10^4$ см⁻³. Также постоянна по широте концентрация ионов гелия (2 $\cdot 10^3$ см⁻³) вплоть до инвариантной широты -40° , где концентрации гелия и водорода становятся близки. В орбитальном ходе концентраций обоих ионов отсутствует экваториальный провал, что объяснимо для периода равноденствия и данного долготного сектора [13].

Примерно после —45° инвариантной широты начинается провал в концентрациях легких ионов, достигая минимальных концентраций на широтах —50...-60°. В провале концентрации H⁺ и He⁺ становятся сравнимыми по величине. Провал в концентрациях O⁺ и N⁺ практически не выражен.

уровень, эксперим дается за в районе широтах) 1200+140 широтах увеличив Плане Н+ спада 40+45° м Ото д на 1000 вариация Повед одноврем ности для что пони суточным кислорода нитных с перехода. высоты у в стацион рименте 1000 км на устан масс-спек величины 900 км но к условия

Для

Расчет полученн работе [2 перехода. иай 1965 летний д Сами вел в максим Алуэтте-1 Такой же ISIS-2 и широтами широтах нике «И рименте ; наблюден пока возв как это с вариации Завис [21]. Πoi спутника

СМ6 получены — масс-спексотах апогея.

были проведены зондом взя провести детальное софизических условиях. нов O⁺, H⁺, N⁺ и He⁺, , но для его апогейной я, измеренная плоской снная высокочастотным

ественно превышающей марная ионная конценк широтах преобладают на концентрации О⁺. к широтах до 2500 км .00 до 07.30 (атмосфера

широтой концентрации широтах концентрация 25° и составляет (2+3) нов гелия ($2 \cdot 10^3$ см⁻³) цим гелия и водорода боих ионов отсутствует вноденствия и данного

ается провал в конценсентраций на широтах ровятся сравнимыми по и не выражен. Для исследования ионосферно-плазмосферных связей важную роль играет уровень, где $n(O^+) = n(H^+)$, так называемый уровень перехода H_τ . В данном эксперименте этот уровень получен по измерениям масс-спектрометра. Наблюдается зависимость уровня H_τ от широты. Днем он изменялся от 1300+1400 км в районе экватора до 2400+2500 км на широтах магнитного наклонения (магнитных широтах) 40+45°. Ночью уровень менялся от 900+1000 км в районе экватора до 1200+1400 км в районе 40+45° и 2400 км на магнитных широтах 50+55°. На широтах 20—30° он уменьшался до 750 км. Таким образом, уровень перехода увеличивался от низких широт к высоким как днем, так и ночью.

Планетарное распределение O⁺ и H⁺ таково (см. рис. 3), что концентрация H⁺ спадает, а кислорода возрастает к высоким широтам, начиная примерно с 40+45° магнитной широты, что прибодит к возрастанию уровня перехода.

Ото дня к ночи уровень менялся на 400 км в районе экватора и в среднем на 1000 км на средних широтах, что говорит о более значительных суточных вариациях по направлению к высоким широтам.

Поведение уровня перехода O⁺ — H⁺ в течение суток исследовалось при одновременном решении уравнения сохранения энергии и уравнения непрерывности для Н⁺ и O⁺ в работе [19]. Расчет такого стационарного случая показал, что понижение уровня перехода ночью в средних широтах в основном вызывается суточными вариациями электронной температуры и концентрации нейтрального кислорода. В работе [20] показано, что наличие потоков Н⁺ и О⁺ вдоль геомагнитных силовых линий должно увеличивать величину суточных вариаций уровня перехода. Расчет для динамических условий на низких широтах дает уменьшение высоты уровня перехода ночью по сравнению с днем, равное 500 км, тогда как в стационарных условиях это уменьшение равно 250 км [20]. В нашем эксперименте разница в 400 км между условиями ночи и дня на низких широтах и 1000 км на средних говорит о существенном влиянии динамических процессов на установление уровня перехода. Такие же выводы сделаны по результатам масс-спектрометрического эксперимента на спутнике Explorer-32 [20]. Сами величины уровня перехода днем и ночью на средних широтах (2000 км днем и 900 км ночью) были меньше, чем в эксперименте «Активный», так как относятся к условиям меньшей солнечной активности (1966 г.).

Расчет высоты уровня перехода по профилям электронной концентрации, полученным методом зондирования сверху на спутнике Алуэтт-1, проделан в работе [21]. Представлены суточные, широтные и сезонные зависимости уровня перехода. Данные относятся к минимуму солнечной активности (октябрь 1962 г.-май 1965 г.). Высота перехода изменяется от 500 км в зимнюю ночь до 850 км в летний день, резко увеличиваясь к геомагнитным широтам 50-60° до 1200 км. Сами величины опять значительно меньше полученных на «Интеркосмосе-24» в максимуме солнечной активности. В ночных условиях в эксперименте на Алуэтте-1 наблюдается уменьшение уровня в районе ±30° геомагнитной широты. Такой же эффект виден и по масс-спектрометрическим измерениям на спутнике ISIS-2 и вызывается увеличением O⁺ на экваторе по сравнению с геомагнитными широтами ±30°. Тенденция к уменьшению уровня перехода ночью на этих же широтах наблюдается и по данным масс-спектрометрических измерений на спутнике «Интеркосмос-24». Другой причиной такого уменьшения в нашем эксперименте может быть меньшая величина индекса солнечной активности во время наблюдений на этих широтах. Количество данных по уровню перехода не дало пока возможности исследовать подробно его поведение в течение ночных часов, как это сделано в работе [22], корреляцию уровня с К_е-индексом, его долготные вариации.

Зависимости уровня перехода от солнечной активности исследовались в работе [21]. Показано, что уровень растет с увеличением активности. По результатам спутника ISIS = 1 ($F_{10,7}$ = 150 ед.) ночью на низких широтах он равен 1100 км,

а для $F_{10,7} = 112$ ед.— только 750 км (данные ISIS-2). Ранее было показано, что уровни перехода в эксперименте «Активный» значительно выше измеренных в экспериментах при низкой активности Солнца.

Для периода высокой солнечной активности (1979 г., $F_{10,7} = 180$ ед.) получены данные ионного масс-спектрометра на спутнике ISS-В и представлены в виде относительных концентраций ионов в зависимости от времени суток в работе [3]. Результаты относятся к постоянной высоте 1100 км, периоду летнего и зимнего солнцестояния, к азиатской зоне.

Из анализа данных можно сделать вывод о поведении уровня перехода. На средних широтах (40° геомагнитной широты) ночью (02.00 LT), летом он равен 1100 км, что не противоречит результатам, полученным на спутнике «Интеркосмос-24». Из поведения относительных концентраций в течение суток в период декабрьского солнцестояния видно, что на средних широтах уровень перехода выше днем, чем ночью, что наблюдается обычно в других экспериментах при низкой и средней солнечной активности [21]. Однако на экваториальных широтах он значительно выше ночью, чем днем, причем абсолютная величина концентрации О⁺ не изменяется, оставаясь на дневном уровне, а концентрация H⁺ уменьшается. В эксперименте «Активный» дневные уровни выше ночных, но обработанные данные в области экватора относятся к периоду летнего солнцестояния, что не дает возможности проверить эту аномалию поведения уровня перехода, проявляющуюся только во время зимнего солнцестояния.

Ионы гелия в период высокой солнечной активности

Поскольку гелий — одна из важных составляющих верхней атмосферы, большое внимание в литературе уделялось теоретическому и экспериментальному изучению вариаций содержания He⁺ относительно H⁺. В ранних моделях ионосферы предполагалось, что в период максимальной солнечной активности из-за увеличения температуры в ионосфере должен образовываться слой доминирующих ионов He⁺ [12].

Прямые и косвенные измерения водорода и гелия в области высот 1000 км во время 19 цикла солнечной активности проводились редко, что не позволило сделать окончательные выводы о распределении легких ионов. Во второй половине солнечного цикла 19 с помощью в основном ионных ловушек было обнаружено преобладание ионов гелия во внешней ионосфере [2, 12]. Высота и толщина слоя гелия, естественно, зависят от времени суток, сезона, широты, уровня солнечной активности и т. п.

Во время 20 солнечного цикла слой гелия не был обнаружен ни одним из методов в том числе и масс-спектрометрическим, по крайней мере, на низких и средних широтах [12]. На высоких широтах на спаде 20 цикла масс-спектрометрами на спутниках OGO-6, ISIS-2, AE-D зарегистрировано преобладание гелия в узком интервале широт (около 10°) только при определенных условиях освещения атмосферы Солнцем (местное время, сезон) [23, 24].

В 21 цикле солнечной активности во время его максимума по масс-спектрометрическим данным спутника ISS-В ионы гелия не всегда были малой составляющей [3]. Ночью во время декабрьского солнцестояния наблюдалось преобладание He⁺ (от 50 до 70%) на геомагнитных широтах 20, 30 и 40°, т. е. в зимнем полушарии. Во время июньского солнцестояния в зимнем полушарии такого явно выраженного эффекта не наблюдалось. Активность солнца в период эксперимента $F_{10,7} = 180$ единиц.

В эксперименте «Активный» равные концентрации H⁺ и He⁺ вплоть до некоторого превышения концентраций He⁺ над H⁺ и O⁺ наблюдались на экваториальной стенке провала в легких ионах (L = 3+4), а значительное преобладание He⁺ было на высоких широтах в области высокоширотного провала, так называемого «hole» (как в эксперименте на AE-D [23]), для зенитных углов больших

B ионов темпе Данны стотни актив конце B освещ летом лагает 6 · 10s состав Ки 13 высота 6000+7 Ha H⁺, erc Βэ максим Пол изменя широта областя Равн в легки над Н+ на поря (на инв

3

100°, на вс

[24],

поля,

и 100

«Акті

римен

2000+

(как

R

H

В ук экваторі провале предмет

5

слой Не

ИТ. П.

 Bilitza Res. 1
 Epeyc 1 CCCP.

было показано, что ыше измеренных в

180 ед.) получены
 едставлены в виде
 ени суток в работе
 периоду летнего и

овня перехода. На Т), летом он равен спутнике «Интерние суток в период уровень перехода экспериментах при ориальных широтах величина конценконцентрация Н⁺ выше ночных, но поведения уровня гозния.

٢

۲

¢

3

\$

вности

и атмосферы, болькспериментальному моделях ионосферы ности из-за увелиюй доминирующих

сти высот 1000 км что не позволило Во второй половине к было обнаружено Высота и толщина , широты, уровня

ужен ни одним из и мере, на низких цикла масс-спектвано преобладание деленных условиях 24 l.

на по масс-спектробыли малой составнаблюдалось преоб-, 30 и 40°, т. е. в зимнем полушарии сть солнца в период

Не⁺ вплоть до неодались на экватольное преобладание провала, так назыных углов больших 100°, когда верхняя часть силовых линий освещена. Однако это наблюдается не на всех витках в одном и том же секторе местного времени. Как предполагается [24], это может быть вызвано различной ориентацией межпланетного магнитного поля, а значит, и разным характером конвекции.

В работе [23] указывалось, что He⁺ в высокоширотном провале между 500 и 1000 км доминирует исключительно для условий равнодействия. В эксперименте «Активный» это наблюдается на высотах около 2000 км в период солнцестояния.

На средних широтах, ночью, во время декабрьского солнцестояния в эксперименте «Активный» не наблюдался слой Не⁺, по крайней мере, на высотах 2000+2400 км. К сожалению, для указанных условий на высотах около 1100 км (как на ISS-B) в эксперименте «Активный» данные отсутствуют.

Заключение

В статье представлены данные по абсолютным и относительным концентрациям ионов O⁺, N⁺, H⁺, He⁺, суммарной ионной концентрации, электронной и ионной температурам в интервале высот 500+2500 км в спокойных геомагнитных условиях. Данные получены масс-спектрометром, плоской ионной ловушкой и высокочастотным зондом на спутнике «Интеркосмос-24» в период максимума солнечной активности 22 цикла. Показано, что в этот период наблюдались повышенные концентрации и температуры.

В области перигея (500+560 км), где преобладают ионы O⁺, концентрация в освещенное время суток на широтах ±35° достигала (1+3) 10⁶ см⁻³. Ночью летом на средних широтах высота максимума в концентрации O⁺, как предполагается, могла достигать 500—520 км. Концентрация в максимуме была равна 6 10⁵ см⁻³. Величины температур на этих высотах днем на низких широтах составляют $T_{,} \approx 2500+3000$ К, $T_{i} \approx 1000+1300$ К, на средних широтах 3000+3500 К и 1300+1700 К соответственно. В области главного ионосферного провала на высотах порядка 1000 км электронная температура часто поднимается до 6000+7000 К.

На высотах апогея (2400+2500 км) в области низких широт, где преобладает H^+ , его концентрация составляет (2+3) · 10⁴ см⁻³, а T_- около 6000 К.

В экваториальной области часто ярко выражена геомагнитная аномалия с максимумами в N, примерно на ±15° инвариантной широты.

Получен высокий уровень перехода от концентраций О⁺ к H⁺. Днем он изменялся от 1300+1400 км в районе экватора до 2400+2500 км на магнитных широтах 40+45°, а ночью от 900+1000 км до 1200+1400 км в этих же широтных областях.

Равные концентрации He⁺ и H⁺ наблюдались на экваториальной стенке провала в легких ионах (L = 3+4) вплоть до некоторого превышения концентрации He⁺ над H⁺ и O⁺ в этой широтной области. Наблюдалось значительное (больше чем на порядок величины) преобладание гелия в области высокоширотного провала (на инвариантных широтах больше 70°). Для того, чтобы появился заметный слой He⁺, необходимо сочетание определенных условий освещения, сезона, высот и т. п.

В указанный период времени регистрация таких интересных явлений, как экваториальная аномалия в концентрации, преобладание He⁺ в высокоширотном провале, происходила довольно часто. Детальное их описание и анализ будут предметом дальнейших статей.

СПИСОК ЛИТЕРАТУРЫ

1. Bilitza D. Empirical modeling of ion composition in the middle and topside ionosphere//Adv. Space Res. 1990. V. 10. № 11. P. 47.

2. Бреус Т. К. Ионы гелия в ионосфере: Препринт № 7365-120. М.: Радиотехнический ин-т АН СССР, 1965.

- 3. Goel M. K. and Rao B. C. N. Ion composition behaviour in low and mid-latitudes during high solar activity//Adv. Space Res. 1984. V. 4. № 1. P. 111-117.
- Worldwide Maps of Electron Density and Temperatures. Mean Ion Mass. Ion Temperature and Ion Composition Obtained from Ionosphere Sounding Satellite — b Observations. August 1978 to April 1980//Commun. Res. Laborator. Tokyo, Japan, 1981.
- Newberry I. T., Comfort R. H., Richards P. G. and Chappell C. R. Termal He⁺ in the plasmasphere: Comparison of observation with numerical calculations//J. Geophys. Res. 1989. V. 94. № A11. P. 15.265-15.276.
- 6. Brace L. H., Theis R. F., Hoehy W. R. A global view of F-region electron density and temperature at solar maximum//Geophys. Research Letters. 1982. V. 9. № 9. P. 989-992.
- Информация об основных научных результатах международных проектов, реализованных в 1989 г.//Информационный бюллетень 21. Москва, 1991. С. 35—37.
- 8. Кочнев В. А., Барзилович Ю. П., Гречнев К. В. и др. Радиочастотный масс-анализатор повышенной чувствительности для исследования верхних атмосфер Земли и планет: Препринт № 332. М.: ИКИ АН СССР, 1977.
- 9. Афонин В. В., Смирнова Н. Ф. Оптимизация комплексного эксперимента по измерению параметров холодной плазмы: Препринт № 1608. М.: ИКИ АН СССР, 1990.
- Афонин В. В., Гдалевич Г. Л., Грингауз К. И., Кайнарова Я., Шмилауэр Я. Исследования ионосферы, проведенные при помощи спутника «Интеркосмос-2»//Космич. исслед. 1973. Т. 11. № 2. С. 254—266.
- 11. Кубат К., Класс Я., Шмилауэр Я., Афонин В. В. Аппаратура для исследования внешней ионосферы. М.: ИЗМИРАН СССР, 1980. С. 120.
- 12. Тейлор Г. А., мл., Мейр Х. Дж., Бринтон Г. К. Исследование ионов водорода и гелия в период увеличения солнечной активности.//Масс-спектрометрия верхней атмосферы Земли. Л.: Гидрометеоиздат, 1972. С. 127-145.
- 13. Breig E. L., Hoffman J. H. Variations in ion composition at middle and low latitudes from Isis 2 satellite//J. Geophys. Res. 1975. V. 80. № 16. P. 2207-2216.
- 14. Ершова В. А., Гречнев К. В., Шмилауэр Я. Исследование состава положительных ионов на ракете «Вертикаль-6» методом масс-спектрометрии//Ракетное зондирование верхней атмосферы и ионосферы. Ростов-на-Дону: Ростовский университет, 1989. С. 68—74.
- Шульчишин Ю. А. Исследование состава положительных ионов на ракете «Вертикаль-10»//Ракетное зондирование верхней атмосферы и ионосферы. Ростов-на-Дону: Ростовский университет. 1989. С. 117—128.
- 16. Бауэр З. Физика планетных ионосфер. М.: Мир, 1976. С. 211.
- Sagava E., Miyazaki S., Mori H., Ogawa T. Night-time electron temperature through in the equatorial topside ionosphere revealed from RPA experiments on the ISS-b satellite//J. Atmosph. Terr. Phys. 1983. V. 43. № 11. P. 1165-1173.
- Walke G. O. Longitudinal structure of the F-region equatorial anomaly a review//J. Atmos. Terr. Phys. 1981. V. 43. № 8. P. 763-774.
- 19. Mayr H. G., Brace L. H. and Dunham G. S. Ion composition and temperature in the topside ionosphere//J. Geophys. Res. 1967. V. 72. № 17. P. 4391-4404.
- Бринтон Г. К., Пикет Р. А., Тейлор Г. А. мл. Суточные и сезонные вариации ионного состава атмосферы и его корреляция с зенитным углом Солнца.//Масс-спектрометрия верхней атмосферы Земли. Л.: Гидрометеоиздат, 1972. С. 164—178.
- Titheridge J. E. Ion transition heights from topside electron density profiles//Planet. Space Sci. 1976.
 V. 24. P. 229-245.
- Serafimov K. V., Dachev T. P., Kutiev I. S. et al. Temporal and latitudinal variations of O⁺ and H⁺ transitions levels obtained by Intercosmos-2 satellite data//Indian J. Radio Space Phys. 1978. V. 4. P. 293.
- 23. Heelis R. A., Murphy J. A., and Hanson W. B. A feature of the behaviour of He⁺ in the nightside high-latitude ionosphere during equinox//J. Geophys. Res. 1981. V. 86. № A1. P. 59-64.
- 24. Quegan S., Bailey G. J., Moffett R. J. Regions of He⁺ dominance in the high-latitude topside ionosphere//Planet. Space Sci. 1984. V. 32. № 7. P. 791-802.

Поступила в редакцию 10.01.1993

94

#